Heat transfer of thin-film Casson hybrid nanofluid flow across an unsteady stretching sheet

Authors

  • Nur Ilyana Kamis Universiti Teknologi Malaysia
  • Md Faisal Md Basir Universiti Teknologi Malaysia
  • Taufiq Khairi Ahmad Universiti Teknologi Malaysia
  • Lim Yeou Jiann Universiti Teknologi Malaysia

DOI:

https://doi.org/10.33292/amm.v3i1.27

Keywords:

Thin-film, Suction, Nanoparticles, Keller-box method

Abstract

Hybrid nanoparticles copper and alumina effect on the heat transfer of thin-film blood flow toward an unsteady permeable stretching sheet is studied. The influence of suction is considered. The governing partial differential equations together with boundary conditions are reduced into the set of ordinary differential equations by implementing the similarity transformations. The Keller-box method is used to solve the momentum and heat equations. The characteristics of the blood flow and heat transfer under the effect of unsteadiness parameter, nanoparticles volume fraction, Casson parameter, and intensity of suction for different thin-film thickness are discussed. The numerical results of the velocity and temperature profiles are graphically displayed. The physical interest such as the local skin friction and Nusselt number are depicted in a tabular form.

References

Abbas, Z., Sheikh, M., & Motsa, S. S. (2016). Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy, 95, 12-20. doi:10.1016/j.energy.2015.11.039

Ali, H. (2020). Hybrid Nanofluids for Convection Heat Transfer.

Andersson, H., Aarseth, J., Braud, N., & Dandapat, B. (1996). Flow of a power-law fluid film on an unsteady stretching surface. Journal of Non-Newtonian Fluid Mechanics, 62(1), 1-8.

Anitha, S., Thomas, T., Parthiban, V., & Pichumani, M. (2019). What dominates heat transfer performance of hybrid nanofluid in single pass shell and tube heat exchanger? Advanced Powder Technology, 30(12), 3107-3117. doi:https://doi.org/10.1016/j.apt.2019.09.018

Bai, M.-j., Liu, J.-l., He, J., Li, Z.-y., Wei, J.-j., Chen, L.-x., Li, C.-m. (2020). High efficiency heat transfer and antifriction characteristics of SMWCNTs nanofluids. Diamond and Related Materials, 105, 107792. doi:https://doi.org/10.1016/j.diamond.2020.107792

Carragher, P., & Crane, L. (1982). Heat transfer on a continuous stretching sheet. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 62(10), 564-565.

Cebeci, T., & Bradshaw, P. (1988). Physical and computational aspects of convective heat transfer. New York: Springer.

Crane, L. J. (1970). Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP, 21(4), 645-647.

El-Aziz, M. A., & Afify, A. A. (2016). Effects of Variable Thermal Conductivity with Thermal Radiation on MHD Flow and Heat Transfer of Casson Liquid Film Over an Unsteady Stretching Surface. Brazilian Journal of Physics, 46(5), 516-525. doi:10.1007/s13538-016-0442-3

Hashimoto, S., Kurazono, K., & Yamauchi, T. (2020). Anomalous enhancement of convective heat transfer with dispersed SiO2 particles in ethylene glycol/water nanofluid. International Journal of Heat and Mass Transfer, 150, 119302. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2019.119302

Hussien, A., Md Yusop, N., Abdullah, M. Z., Al-Nimr, M., & Janvekar, A. A. (2017). Heat Transfer Enhancement using Hybrid Nanofluids.

Izadi, M., Mohebbi, R., Karimi, D., & Sheremet, M. A. (2018). Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chemical Engineering and Processing - Process Intensification, 125, 56-66. doi:https://doi.org/10.1016/j.cep.2018.01.004

Kamyar, A., Saidur, R., & Hasanuzzaman, M. (2012). Application of Computational Fluid Dynamics (CFD) for nanofluids. International Journal of Heat and Mass Transfer, 55(15), 4104-4115. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.052

Khan, N. S., Islam, S., Gul, T., Khan, I., Khan, W., & Ali, L. (2018). Thin film flow of a second grade fluid in a porous medium past a stretching sheet with heat transfer. Alexandria Engineering Journal, 57(2), 1019-1031. doi:https://doi.org/10.1016/j.aej.2017.01.036

Mahmoud, M. A. A., & Megahed, A. M. (2017). MHD Flow and Heat Transfer Characteristics in a Casson Liquid Film Towards an Unsteady Stretching Sheet with Temperature-Dependent Thermal Conductivity. Brazilian Journal of Physics, 47(5), 512-523. doi:10.1007/s13538-017-0518-8

Makinde, O. D., & Rundora, L. (2017). Unsteady mixed convection flow of a reactive casson fluid in a permeable wall channel filled with a porous medium. Defect and Diffusion Forum, 377, 166-179. doi:10.4028/www.scientific.net/DDF.377.166

Megahed, A. (2015). Effect of slip velocity on Casson thin film flow and heat transfer due to unsteady stretching sheet in presence of variable heat flux and viscous dissipation. Applied Mathematics and Mechanics, 36(10), 1273-1284.

O'Brien, S., & Schwartz, L. (2002). Theory and modeling of thin film flows. Encyclopedia of Surface and Colloid Science, 5283-5297.

Raju, C. S. K., & Sandeep, N. (2017). Unsteady Casson nanofluid flow over a rotating cone in a rotating frame filled with ferrous nanoparticles: A numerical study. Journal of Magnetism and Magnetic Materials, 421, 216-224. doi:10.1016/j.jmmm.2016.08.013

Rawi, N. A., Ilias, M. R., Lim, Y. J., Isa, Z. M., & Shafie, S. (2017). Unsteady mixed convection flow of Casson fluid past an inclined stretching sheet in the presence of nanoparticles. Paper presented at the Journal of Physics: Conference Series.

Ray Atul, K., Vasu, B., Anwar Beg, O., Gorla, R. S. R., & Murthy, P. V. S. N. (2019). Magneto-bioconvection flow of a casson thin film with nanoparticles over an unsteady stretching sheet: HAM and GDQ computation. International Journal of Numerical Methods for Heat & Fluid Flow, 29(11), 4277-4309. doi:10.1108/HFF-02-2019-0158

Rehman, S., Idrees, M., Shah, R. A., & Khan, Z. (2019). Suction/injection effects on an unsteady MHD Casson thin film flow with slip and uniform thickness over a stretching sheet along variable flow properties. Boundary Value Problems, 2019(1), 26. doi:10.1186/s13661-019-1133-0

Rehman, S., Shah, R. A., Khan, A., & Khan, Z. (2020). Free surface film flow of an unsteady second grade fluid over a stretching sheet with surface tension linearly varies with temperature. Physica A: Statistical Mechanics and its Applications, 123956. doi:https://doi.org/10.1016/j.physa.2019.123956

Sakiadis, B. C. (1961). Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE Journal, 7(2), 221-225. doi:10.1002/aic.690070211

Samrat, S. P., Sulochana, C., & Ashwinkumar, G. P. (2019). Impact of Thermal Radiation on an Unsteady Casson Nanofluid Flow Over a Stretching Surface. International Journal of Applied and Computational Mathematics, 5(2). doi:10.1007/s40819-019-0606-2

Sulochana, C., Samrat, S. P., & Sandeep, N. (2018). Magnetohydrodynamic radiative liquid thin film flow of kerosene based nanofluid with the aligned magnetic field. Alexandria Engineering Journal, 57(4), 3009-3017. doi:https://doi.org/10.1016/j.aej.2017.11.005

Vijaya, N., Sreelakshmi, K., & Sarojamma, G. (2016). Effect of magnetic field on the flow and heat transfer in a Casson thin film on an unsteady stretching surface in the presence of viscous and internal heating. Open Journal of Fluid Dynamics, 6(4), 303-320.

Waini, I., Ishak, A., & Pop, I. (2019). Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International journal of heat and mass transfer, 136, 288-297. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101

Waini, I., Ishak, A., & Pop, I. (2020). MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Applied Mathematics and Mechanics, 41(3), 507-520. doi:10.1007/s10483-020-2584-7

Wang, C. (1990). Liquid film on an unsteady stretching surface. Quarterly of Applied Mathematics, 48(4), 601-610.

Wang, C. (2006). Analytic solutions for a liquid film on an unsteady stretching surface. Heat and Mass Transfer, 42(8), 759-766.

Yazid, M. N. A. W. M., Sidik, N. A. C., & Yahya, W. J. (2017). Heat and mass transfer characteristics of carbon nanotube nanofluids: A review. Renewable and sustainable energy reviews, 80, 914-941. doi:https://doi.org/10.1016/j.rser.2017.05.192

Zakharov, M., & Sadovsky, M. (2013). The role of blood circulatory system in thermal regulation of animals explained by entropy production analysis.

Zuhra, S., Khan, N. S., & Islam, S. (2018). Magnetohydrodynamic second-grade nanofluid flow containing nanoparticles and gyrotactic microorganisms. Computational and Applied Mathematics, 37(5), 6332-6358. doi:10.1007/s40314-018-0683-6

Downloads

Published

2023-07-01

Issue

Section

Articles