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Abstract: A five-compartment epidemiological model is analyzed to illustrate the dynamics of infectious
diseases. In this model, the population is compartmented into susceptible, latent, infected, post-infection,
and recovered. The model is a system of ordinary differential equations, where the stability is analyzed
using Routh’s stability criterion. Two equilibrium points; disease-free and endemic equilibrium are stable
but depends on the basic reproduction number. Derivation of the basic reproduction number is given using
the next-generation method. This study ended by providing a case study of measles outbreaks before the
effective implementation of the vaccine. The analysis of data fitting is done by using the Simulated Annealing
minimization routine and the error value is 0.0406.

Keywords: epidemiological model; basic reproduction number; stability analysis; data fitting; simulated
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INTRODUCTION

There are a variety of models to study the spread of pathogenic disease. One of the basic
approaches to simulate the disease outbreak is by using a compartmental model. In this model,
multiple compartments that allow individuals to jump between compartment is considered. The
famous model in studying infectious disease is the SIR model. The model consists of three
compartments, namely the susceptible, infected, and recovered individuals. The susceptible
individuals are people that have never in contact with that particular infectious disease. When
contact happens, they will become infected individuals and able to infect others. The recovered
individuals are people who have recovered from the disease. This SIR model was introduced by
Kermack and McKendrick and has played a major role in mathematical epidemiology (Brauer,
2005).

In this paper, we add another two compartments, which are the class of latent and post-
infection. The latent state is a latent period of an infectious disease. Latent means the presence of
a pathogen in the body without causing diseases and it as the period between a susceptible
individual to become an infected individual (Eisenberg, Brookhart, Rice, Brown,& Colford ]Jr,
2002). The assumption of the latent class is the susceptible individuals do not immediately
become infected individuals after close contact with infected individuals. While the post-infection
state is a condition where the infected individuals are no longer can cause infection but may have
several sicknesses due to the infection before fully recovered (Oswald et al., 2007). The model
formulation is explained in the following section.

Suppose a population density model contains a five-compartmental state, namely
susceptible (S), latent (L), infected (I), post-infection (P), and recovered (R) individuals. The total
population density is given as N(t) = S(t) + L(t) + I(t) + P(t) + R(t). The SLIPR model is formulated
as follows:
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where u is the population growth rate, §(I) is the force of infection with respect to infected
individuals, ¥ is the immunity decay rate and be susceptible individuals, 7 is the rate of the latent
individuals leave to infected state, § is the disease mortality rate, o is the infected individuals leave
to post-infection state, 9 is the recovery rate of infected individuals into the recovered state, and
p is the rate of post-infection individuals leave into recovered individuals. In our case study on the
measles outbreak, parameter i) will vanish due to permanent immunity formed in the human body
after measles illness (Buchanan & Bonthius, 2012).

In this paper, we use the function of the force of infection as 5(I) = ayl/N, where « is the
contact rate, y is the chance of pathogen transmissibility. Model (1) can be simply transformed

into terms of the population proportion. To do that, we rescale model (1) by
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Then, the population proportion Og?Odel (1) can be written as:
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where 0 = u + 6 + g + 9. Due to the purpose of monitoring the human population, the models satisfy
the condition of the positivity of states at time t = 0 with non-negative parameters. Measles
outbreaks: an overview

Measles, caused by the measles virus is a viral respiratory infection that attacks the immune
system and very contagious to any person that does not have immunity (Leung, Hon, Leong,&
Sergi, 2018). It spread through person-to-person transmission mode. Measles can affect all ages
but it can easily affect the children who are below 10 years old. Measles fever may only happen
once in a lifetime. When someone recovered from this illness, natural immunity will form in their
body (Buchanan & Bonthius, 2012). Someone who had been affected within 1 or 2 days did not
show any symptoms until 4 days later, rashes appear. For children and babies, it is the first and
worst fever that possibly can lead to blindness, deafness, or impaired vision. The symptoms of
measles are high body temperature, skin rash, coughing, and sore throat, muscle aches, watery
eyes, and sensitive eyes to light. Measles viruses keep active in the air or on objects and surfaces
in a close area for up to 2 hours (Filia et al,, 2015).

Measles illness is largely preventable by measles-mumps-rubella (MMR) vaccines.
Vaccines are a great tool that can eliminate the disease from the map. As shown in Figure 1, a
dramatically decreasing number of measles incidence can be observed since the effective
vaccination program. In Malaysia, the measles vaccine is introduced in 1982 (Chen & Lam, 1985),
but only in 1987 onwards, the vaccine covers more than half of the susceptible population.
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Children will get two doses of MMR vaccine when they are 9 months old and another dose when
they are 12 months old (Kusnin, 2017). Once someone already encounters measles at an early age,
they do not have to take the vaccine but if they are unsure, it is advisable to take the vaccine. Some
cases arise nowadays are due to anti-vax individuals that refuse to take a vaccine for their children
(Helps, Leask, Barclay,& Carter, 2019).When people are not vaccinated, infectious diseases that
have become uncommon quickly reappear. If we stop vaccination, diseases will return even
though with better hygiene, sanitation, and safe water. Vaccine misinformation is a major threat

to global health that could reverse decades of progress made in tackling preventable diseases.
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Figure 1: A selected case study: Measles infectious data in Malaysia(Kusnin, 2017).

In this work, we analyzed a general model of infectious disease that contains five-
compartmental states. The work is separated in two ways. First is by analyzing the stability of the
model and its basic reproduction number. The second is involving a case study of the model
dynamics towards measles incidence before the vaccination strategy cover more than half of the
susceptible population (1976 - 1986). Even though measles infection is no longer a global threat
nowadays, we are interested to investigate the population dynamics of the model (1) compared
to the actual data.

In the following, we briefly explained the mathematical methods used in this paper. Then,
we discussed the mathematical analysis of the model using any appropriate value of parameters.
A case study is done by using the incidence data of measles illness before the vaccination program
effectively covers half the susceptible individuals. An infectious model with a vaccination strategy
will be considered by the authors in another work. Lastly, the concluding section summarizes this
study.

METHODOLOGY

This paper discussed the dynamics of model (2) with three aspects of methodologies, which
is the next-generation method, Routh’s stability criterion, and Simulated Annealing minimization
routine.

Next-generation method

The next-generation matrix is a method that commonly use to deal with complicated
compartmental epidemic models(Diekmann, Heesterbeek,& Roberts, 2010). It is used to derive
the basic reproduction number, Ry for an infectious disease model. Ry is the fundamental threshold
of any infectious disease model, either the disease will eventually eliminate or consistently persist
throughout the population.

The essential step in the next-generation method is the identification of states for the gains
and losses terms. Gains terms are from the relevant states for which an infection event increases,
while losses terms are from the relevant states for which the current or future infector disappears
or loss from these states. Then, the diseases free equilibrium point is determined for evaluating
matrix F and V. The disease-free equilibrium point is quite easy to obtained and usually by
intuition with reasonable assumption. Matrix F is constructed by the gains terms of each state that
differentiated with respect to each state, while matrix V is by the losses terms that differentiated
with respect to each state. Then, both matrices are evaluated at the disease-free equilibrium and
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compute F-V-1. Ry is determined by the spectral radius or the dominant eigenvalue of F-V-1
(Diekmann, Heesterbeek,& Roberts, 2010).

Routh’s stability criterion

By following other comprehensive texts (Anagnost & Desoer, 1991; Thowsen, 1981),
suppose a generic characteristic polynomial in the form of:

apgAr + a At + apAn-24-. .. +a, At +a, (3)

where ao# 0 and a, > 0. The Routh array is constructed in order to employ Routh’s stability

criterion (Sivanandam & Deepa, 2007). Routh array is defined as follows:

An ao az a4 ae

An a1 as as arz
-1
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An d1 dz ds da
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The coefficient of b, c;, d; and the rest is calculated in this following manners:
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and goes on until the nthrow of the array complete, where the cross multiplication is from
the previous two rows. These coefficients need to be generated until all subsequent coefficients
are zero. Therefore, the first column in the Routh array is observed to determine the stability of
the system.

The stability criteria are described in the following condition: (i) if all elements are
positive, the system is stable (all the roots lie on the left half of the A-plane); (ii) if there are
negative elements of sign changes from positive to negative or otherwise, the system is unstable
(there are roots lie on the right-half of the A-plane). Note that the number of roots on the right-
half of the A-plane is equal to the number of sign changes in the Routh array. There are some
special cases in computing the Routh array which is row zeros element and zero first-column
elements.

Simulated annealing optimization routine

Simulated annealing as a global optimization was first introduced in the early 1980s by
Kirkpatrick, Gelatt,& Vecchi (1983). The simulated annealing algorithm mimics the annealing
process: a process by which a solid in a heat bath melts when the temperature of the heat bath is
increased to a maximum value. At high temperatures, all particles in the liquid-phase move
randomly in high energy. The temperature of the heat bath is then decreased slowly until the
particles arrange themselves in the low energy state of the solid. Simulated annealing is a powerful
technique in minimizing or maximization an objective function, which has been applied in many
different disciplines, for example in model data fitting by minimizing the error between model
simulation and actual data.
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The simulated annealing algorithm accepts all points that lower the objective function and
it also accepts all points that make the objective function go up with probability w. The probability

of accepting downhill or uphill moves is given by:
1 if 40 <0,
w={ —Ad 4
exp(—g—) if 4®>0,
where A® is the increase in objective function 0. In this way, the algorithm does not stuck
in local minima, which is a major advantage of simulated annealing over other methods(Busetti,
2003). We use the simulannealbnd routine in the procedure of data fitting.

RESULTS AND DISCUSSION
Stability analysis and R,

An infectious model deals with two important points, namely the disease-free equilibrium
(€0) and the endemic equilibrium (&1). Finding the equilibria is essential to understand long-term
behaviour without the need to analytically solve the model (May, 1976). At equilibrium, the
derivatives of model (2) are set equal to zero:

u—aylS —uS+yYR =0,

aylS —ulL —nL =0,

nL—6I =0, )
ol —uP —pP =0,
pP+PI—uR—lpR=0.)

Equilibrium needs to satisfies the condition of Eq. (5). Note that the equilibrium & exists in
a condition of infected individuals to eventually terminated (I = 0) and the entire population
consists of only susceptible individuals (Bawa, Abdulrahman, Jimoh,& Adabara, 2013). Thus, &=
(1,0, 0,0, 0). While analyzing &1 = (S1, L1, I1, P1, R1) is a little bit tricky.

In an endemic situation, the disease is permanently existing in the population (I # 0).
According to Jones (2007), the critical proportion of susceptible individuals to occur an epidemic
is expressed as S1 = Rol, where Ry is the basic reproduction number. Therefore, the next-
generation matrix is employed to compute Ro. Note that the relevant states are L and I. The terms
involve in gains and losses to L is ayIS and (uL + nL), respectively, while the terms involve in gains
and losses to Iis 0 and (-nL + 61), respectively. Then, the matrix F and V are computed at goand
expressed as follows: 0 o p+n 0

F=[ “v=] ] ®
0 0 -n 0

Then, Ro is determined by evaluating the spectral radius of F-V* or the dominant eigenvalue that

satisfies the determinant of F-V1. Thus, the R is exrc)zr)(/a%sed as:

o rwe @

For &1 = (Sy, Ly, I3, P1, R1), there exist a unique equilibrium with S; = [6(n+w)/ayn]. It is necessary
for £1to exist such that 0 < S; = Re! < 1, or equivalently, Ro> 1. On contrary, Ro < 1 is sufficient for &
to exist. In a nutshell, Ro is a threshold parameter that determines the coexistence on the type of
equilibria. Jacobian matrix is then evaluated at &, to examine the local stability as o is of the interest in
eliminating the epidemic. The Jacobian matrix at € is written as:

S cuen a0 0]
—u—n ay
](SO) =10 n —6 0 0 (8)
[ 0 0 o —u-p 0
0 0 p p —u—y

After some algebraic manipulation, the characteristic polynomial with eigenvalue A is
expressed as follows:

(A=) (—ayn+n0 +niA+ 041+ A2+ 0u + Au) -
(-A=p=p) (~A—p=9)=0. 2
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From the characteristic polynomial, the eigenvalues may be negative, positive, zero, or any
combinations of these alternatives. Therefore, the equilibrium could be stable, unstable, or saddle
which is depending on the values of parameters. Analysis continued with numerical
experimentation with a set of parameters value.

To examine & for further interpretation, the characteristic polynomial Equation (9) is
analyzed using the Routh stability criterion. On the purpose of the existence of &, the parameter
settings with guaranteed Ry < 1 are as follows

1 =0.035a =0.014,y = 0.9, = 0.084,p = 0.0063,
n = 0.049,6 = 0.0001,0 = 0.0035,P = 0.0042, } (o)
S(0) =0.5,L(0) = 0.1,1(0) = 0.3, P(0) = 0.025,R(0) = 0.075.
By substituting the value of parameter into Eq. (9), yield:
A5 4+ 3.221 X 10-114 4+ 3.8267 x 10-243 + 2.0882 x 10-312
+5.3153 X 1054+ 5.1223 x 10-7 = 0,

Then, using the Routh’s stability criterion in Section 2.2 to analyze Equation above. The
constructed Routh array is as follows:

! 3.8267x102 5.3153x10°5

A4 | 3.221x101 2.0882x10-3 5.1223x107
A3 1 3.1784x102  5.1563x10-5

A2 {1 1.5656x102  5.1223x107

Al | 4.1164%105

A0 51223x107

From the Routh array, there are no sign changes in the first column. According to the Routh
stability criterion, the system is stable at &.

Next, model simulation using the aid of ode45 Matlab built-in function is carried out by using
parameter value in (10).

1

1
S
e
0.8 0.8 —_—— |
5 s | [ P
T g J—— R
g 0.6 206
o o
S 5
® 04 T 04
3 =1
Q o
(o] (o]
= & \‘%-LA_A
§ F2 ) s e ity e e STy i
-
I e o = e L A L A A TS
0 0.5 1 15 2 2.5 3 0 0.5 1 1.5 2 25 3
Year Year

Figure 3: Simulation for a = 0.014 week! (left) and a = 0.14 week! (right).

For Ry=0.1717 < 1, the model simulation is provided in Figure 3 (left). As shown in Figure 3 (left),
model (2) reach goas t increases. Suppose parameter « is increased to 0.14 week'!, Rybecome
1.7173 which is greater than 1. As shown in Figure 3(right), the system tends to &1for Ro>1in 3
years. As t = o0, g1 = (0.5823, 0.1824, 0.2089, 0.0194, 0.0084) where S; = 0.5823 = 1/R,.
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Data fitting of measles outbreaks: a case study

To do data fitting, an additional ODE is introduced to collect the infected data of measles per

time. Suppose I.um(t) as the number of cumulative measles infectious individuals at time t, then

the ODE is defined as follows: -
dI cum

7 =1L
Thus, the number of cumulative infected individuals keeps increase over time. Due to the large

number of Icum, a rescale number of logio(1+].um) is introduced. Hence, the objective function to

minimize the error between model and actual data is expressed as follows:
n

Error = Z[l0g10 ( 1+ I_cum (l)) - lng( 1+1 cum,data (l))] (12)
i=0
This error function is minimized by using the Simulated Annealing minimization routine. The
result is summarized in Table 3.

Some of the parameters are obtained from a known source. The total population in 1976 is
approximately 12.46 x 106 with a growth rate of 2.52% (Worldometers, 2019). Measles infection
affects children only, thus we consider S(0) = 2 x 106 and the parameter u is set to 0.0252 year-1.
Parameter 1 is vanished due to a measles body immune will naturally be produced after
recovered (Buchanan and Bonthius, 2012). The rest of the parameters are estimated within the
parameter interval. These estimated values give Ro= 1.2889, hence model (2) is stable at &;.
However, when the vaccination program has effectively covered for more than half the susceptible
population in 1987, the measles cases has decreased significantly. The result of our case study is
presented in Figure 5, where both simulated and actual data are expressed in logarithmic scale.

As shown in Figure 4, the model has successfully fit with the actual measurement of measles
outbreaks with an error value of 0.0406. This is the best value obtained by the Simulated
Annealing minimization routine. With these results, the mathematical analysis of this work
concluded here.

2

Table 3: The estimated parameter of the data fitting procedure.

Interval Source Value
5(0) Fixed 2x10°6
L(0)in [4.5,5] x 103 Estimated 4.7131 x
103
= = 1(0) Data 1(1976)
E 8 P(0)in[1,1.5] x 103 Estimated 1.2858 x
k= 'gs 103
S R(0) Fixed 0
u Fixed 0.0252
year-!
ain [0.1,1] Estimated 0.9976
year!
yin [0, 1] Estimated 0.9972
4 Fixed 0
nin[0.1, 1] Estimated 0.9925
year-!
6in [0.1, 1] Estimated 0.1414
year-!
. oin[0.1,1] Estimated 0.2106
8 year-!
£ 9in [0.1,1] Estimated 0.3755
£ year-!
A~ pin[0.1,1] Estimated 0.9709
year-!
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Figure 4: Data fitting using the scaled value of cumulative measles cases.
CONCLUSION

The traditional SIR model is analyzed by adding two compartments, namely latent and post-
infection state. From this study, the connection of Ry as a threshold is analyzed, where Ry < 1 means
the diseases will be extinct in the population implies the model is stable at o but unstable at &1.
Whereas, a vice-versa case occurs in condition Ro> 1. In the case study of measles outbreaks, the
model able to match the incidence data with a reasonable error value. For future research, the
recommendation that can take into account is by studying the vaccination case infectious model
with more detailed data. Overall, the exercise discussed in this work could provide a framework
to develop a generic model for predicting the incidence of other contagious pathogenic diseases,
such as severe acute respiratory syndrome, Ebola, tuberculosis, influenza, Covid-19, and other
emerging infectious diseases.
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