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Abstract: A five-compartment epidemiological model is analyzed to illustrate the dynamics of infectious 
diseases. In this model, the population is compartmented into susceptible, latent, infected, post-infection, 
and recovered. The model is a system of ordinary differential equations, where the stability is analyzed 
using Routh’s stability criterion. Two equilibrium points; disease-free and endemic equilibrium are stable 
but depends on the basic reproduction number. Derivation of the basic reproduction number is given using 
the next-generation method. This study ended by providing a case study of measles outbreaks before the 
effective implementation of the vaccine. The analysis of data fitting is done by using the Simulated Annealing  
minimization routine and the error value is 0.0406. 
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INTRODUCTION 

There are a variety of models to study the spread of pathogenic disease. One of the basic 
approaches to simulate the disease outbreak is by using a compartmental model. In this model, 
multiple compartments that allow individuals to jump between compartment is considered. The 
famous model in studying infectious disease is the SIR model. The model consists of three 
compartments, namely the susceptible, infected, and recovered individuals. The susceptible 
individuals are people that have never in contact with that particular infectious disease. When 
contact happens, they will become infected individuals and able to infect others. The recovered 
individuals are people who have recovered from the disease. This SIR model was introduced by 
Kermack and McKendrick and has played a major role in mathematical epidemiology (Brauer, 
2005). 

In this paper, we add another two compartments, which are the class of latent and post- 
infection. The latent state is a latent period of an infectious disease. Latent means the presence of 
a pathogen in the body without causing diseases and it as the period between a susceptible 
individual to become an infected individual (Eisenberg, Brookhart, Rice, Brown,& Colford Jr, 
2002). The assumption of the latent class is the susceptible individuals do not immediately 
become infected individuals after close contact with infected individuals. While the post-infection 
state is a condition where the infected individuals are no longer can cause infection but may have 
several sicknesses due to the infection before fully recovered (Oswald et al., 2007). The model 
formulation is explained in the following section. 

Suppose a population density model contains a five-compartmental state, namely 
susceptible (𝑆̅), latent (𝐿̄), infected (𝐼)̅  , post-infection (𝑃̄), and recovered (𝑅̄) individuals. The total 
population density is given as 𝑁̄(t) = 𝑆̅(t) + 𝐿̄(t) + 𝐼(̅  t) + 𝑃̄(t) + 𝑅̄(t). The 𝑆̅𝐿̄𝐼𝑃̄̅𝑅̄ model is formulated 
as follows: 
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 𝑑𝑆 
= 𝜇𝑁 − 𝛽(𝐼)𝑆 − 𝜇𝑆 + 𝜓𝑅, ⎫ 

𝑑𝑡 ⎪ 
𝑑𝐿 ⎪ 

= 𝛽(𝐼)𝑆 − 𝜇𝐿 − 𝜂𝐿, ⎪ 
𝑑𝑡 ⎪ 
𝑑𝐼 

 
 

(1) 
 

 

𝑑𝑡 
 

𝑑𝑃 

= 𝜂𝐿 − (𝜇 + 𝛿)𝐼 − 𝜎𝐼 − P𝐼, 
⎬ 
⎪ 

= 𝜎𝐼 − 𝜇𝑃 − 𝜌𝑃, ⎪ 
𝑑𝑡 ⎪ 
𝑑𝑅 ⎪ 

𝑑𝑡 
= 𝜌𝑃 + P𝐼 − 𝜇𝑅 − 𝜓𝑅, ⎭ 

 

where μ is the population growth rate, β(𝐼) is the force of infection with respect to infected 
individuals, ψ is the immunity decay rate and be susceptible individuals, η is the rate of the latent 
individuals leave to infected state, δ is the disease mortality rate, σ is the infected individuals leave 
to post-infection state, ϑ is the recovery rate of infected individuals into the recovered state, and 
ρ is the rate of post-infection individuals leave into recovered individuals. In our case study on the 
measles outbreak, parameter ψ will vanish due to permanent immunity formed in the human body 
after measles illness (Buchanan & Bonthius, 2012). 

In this paper, we use the function of the force of infection as β(𝐼) = αγ𝐼/̅  𝑁̄, where α is the 
contact rate, γ is the chance of pathogen transmissibility. Model (1) can be simply transformed 
into terms of the population proportion. To do that, we rescale model (1) by 

𝑆 𝐿 𝐼 𝑃 𝑅 
𝑆 =     , 𝐿 =     , 𝐼 =     , 𝑃 =     , 𝑅 =   . 

𝑁 𝑁 𝑁 𝑁 𝑁 
Then, the population proportion of model (1) can be written as: 

𝑑𝑆 
 

 

𝑑𝑡 
𝑑𝐿 

 
 

𝑑𝑡 
𝑑𝐼 

 
 

𝑑𝑡 
𝑑𝑃 

 
 

𝑑𝑡 
𝑑𝑅 

= 𝜇 − 𝛼𝛾𝐼𝑆 − 𝜇𝑆 + 𝜓𝑅,⎫ 
 
= 𝛼𝛾𝐼𝑆 − 𝜇𝐿 − 𝜂𝐿, 

⎪ 
= 𝜂𝐿 − 𝜃𝐼, 

⎬ 

= 𝜎𝐼 − 𝜇𝑃 − 𝜌𝑃, 

⎪ 

 
 
 

 
(2) 

𝑑𝑡 
= 𝜌𝑃 + P𝐼 − 𝜇𝑅 − 𝜓𝑅, ⎭ 

where θ = μ + δ + σ + ϑ. Due to the purpose of monitoring the human population, the models satisfy 
the condition of the positivity of states at time t ≥ 0 with non-negative parameters. Measles 
outbreaks: an overview 

Measles, caused by the measles virus is a viral respiratory infection that attacks the immune 
system and very contagious to any person that does not have immunity (Leung, Hon, Leong,& 
Sergi, 2018). It spread through person-to-person transmission mode. Measles can affect all ages 
but it can easily affect the children who are below 10 years old. Measles fever may only happen 
once in a lifetime. When someone recovered from this illness, natural immunity will form in their 
body (Buchanan & Bonthius, 2012). Someone who had been affected within 1 or 2 days did not 
show any symptoms until 4 days later, rashes appear. For children and babies, it is the first and 
worst fever that possibly can lead to blindness, deafness, or impaired vision. The symptoms of 
measles are high body temperature, skin rash, coughing, and sore throat, muscle aches, watery 
eyes, and sensitive eyes to light. Measles viruses keep active in the air or on objects and surfaces 
in a close area for up to 2 hours (Filia et al., 2015). 

Measles illness is largely preventable by measles-mumps-rubella (MMR) vaccines. 
Vaccines are a great tool that can eliminate the disease from the map. As shown in Figure 1, a 
dramatically decreasing number of measles incidence can be observed since the effective 
vaccination program. In Malaysia, the measles vaccine is introduced in 1982 (Chen & Lam, 1985), 
but only in 1987 onwards, the vaccine covers more than half of the susceptible population. 
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Children will get two doses of MMR vaccine when they are 9 months old and another dose when 
they are 12 months old (Kusnin, 2017). Once someone already encounters measles at an early age, 
they do not have to take the vaccine but if they are unsure, it is advisable to take the vaccine. Some 
cases arise nowadays are due to anti-vax individuals that refuse to take a vaccine for their children 
(Helps, Leask, Barclay,& Carter, 2019).When people are not vaccinated, infectious diseases that 
have become uncommon quickly reappear. If we stop vaccination, diseases will return even 
though with better hygiene, sanitation, and safe water. Vaccine misinformation is a major threat 
to global health that could reverse decades of progress made in tackling preventable diseases. 

 

Figure 1: A selected case study: Measles infectious data in Malaysia(Kusnin, 2017). 

In this work, we analyzed a general model of infectious disease that contains five- 
compartmental states. The work is separated in two ways. First is by analyzing the stability of the 
model and its basic reproduction number. The second is involving a case study of the model 
dynamics towards measles incidence before the vaccination strategy cover more than half of the 
susceptible population (1976 – 1986). Even though measles infection is no longer a global threat 
nowadays, we are interested to investigate the population dynamics of the model (1) compared 
to the actual data. 

In the following, we briefly explained the mathematical methods used in this paper. Then, 
we discussed the mathematical analysis of the model using any appropriate value of parameters. 
A case study is done by using the incidence data of measles illness before the vaccination program 
effectively covers half the susceptible individuals. An infectious model with a vaccination strategy 
will be considered by the authors in another work. Lastly, the concluding section summarizes this 
study. 

METHODOLOGY 

This paper discussed the dynamics of model (2) with three aspects of methodologies, which 
is the next-generation method, Routh’s stability criterion, and Simulated Annealing minimization 
routine. 

Next-generation method 

The next-generation matrix is a method that commonly use to deal with complicated 
compartmental epidemic models(Diekmann, Heesterbeek,& Roberts, 2010). It is used to derive 
the basic reproduction number, R0 for an infectious disease model. R0 is the fundamental threshold 
of any infectious disease model, either the disease will eventually eliminate or consistently persist 
throughout the population. 

The essential step in the next-generation method is the identification of states for the gains 
and losses terms. Gains terms are from the relevant states for which an infection event increases, 
while losses terms are from the relevant states for which the current or future infector disappears 
or loss from these states. Then, the diseases free equilibrium point is determined for evaluating 
matrix F and V. The disease-free equilibrium point is quite easy to obtained and usually by 
intuition with reasonable assumption. Matrix F is constructed by the gains terms of each state that 
differentiated with respect to each state, while matrix V is by the losses terms that differentiated 
with respect to each state. Then, both matrices are evaluated at the disease-free equilibrium and 
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compute F·V-1. R0 is determined by the spectral radius or the dominant eigenvalue of F·V-1
 

(Diekmann, Heesterbeek,& Roberts, 2010). 
Routh’s stability criterion 
By following other comprehensive texts (Anagnost & Desoer, 1991; Thowsen, 1981), 

suppose a generic characteristic polynomial in the form of: 
𝑎0𝜆n + 𝑎1𝜆n–1 + 𝑎2𝜆n–2+. . . +𝑎n–1𝜆1 + 𝑎n, (3) 

where a0 ≠ 0 and an > 0. The Routh array is constructed in order to employ Routh’s stability 
criterion (Sivanandam & Deepa, 2007). Routh array is defined as follows: 

λn 

λn 

– 1 

λn 

– 2 

λn 

– 3 

λn 

– 4 

⁝ 

λ0 

 
 

The coefficient of bi, ci, di, and the rest is calculated in this following manners: 
 
 

𝑏   = 
𝑎1𝑎2 − 𝑎0𝑎3 

, 𝑐
 

= 
𝑏1𝑎3 − 𝑎1𝑏2 

, 𝑑
 

= 
𝑐1𝑏2 − 𝑏1𝑐2

,
 

1 𝑎1
 1 𝑏1

 1 𝑐1
 

𝑏   = 
𝑎1𝑎4 − 𝑎0𝑎5 

, 𝑐
 

= 
𝑏1𝑎5 − 𝑎1𝑏3 

, 𝑑
 

= 
𝑐1𝑏3 − 𝑏1𝑐3

,
 

2 𝑎1
 2 𝑏1

 2 𝑐1
 

𝑏   = 
𝑎1𝑎6 − 𝑎0𝑎7 

, 𝑐   = 
𝑏1𝑎7 − 𝑎1𝑏4 

, ⁝
 

3 𝑎1 
3 𝑏1

 

⁝ ⁝ 
 

and goes on until the nth row of the array complete, where the cross multiplication is from 
the previous two rows. These coefficients need to be generated until all subsequent coefficients 
are zero. Therefore, the first column in the Routh array is observed to determine the stability of 
the system. 

The stability criteria are described in the following condition: (i) if all elements are 
positive, the system is stable (all the roots lie on the left half of the λ-plane); (ii) if there are 
negative elements of sign changes from positive to negative or otherwise, the system is unstable 
(there are roots lie on the right-half of the λ-plane). Note that the number of roots on the right- 
half of the λ-plane is equal to the number of sign changes in the Routh array. There are some 
special cases in computing the Routh array which is row zeros element and zero first-column 
elements. 

Simulated annealing optimization routine 
Simulated annealing as a global optimization was first introduced in the early 1980s by 

Kirkpatrick, Gelatt,& Vecchi (1983). The simulated annealing algorithm mimics the annealing 
process: a process by which a solid in a heat bath melts when the temperature of the heat bath is 
increased to a maximum value. At high temperatures, all particles in the liquid-phase move 
randomly in high energy. The temperature of the heat bath is then decreased slowly until the 
particles arrange themselves in the low energy state of the solid. Simulated annealing is a powerful 
technique in minimizing or maximization an objective function, which has been applied in many 
different disciplines, for example in model data fitting by minimizing the error between model 
simulation and actual data. 

a0 a2 a4 a6 … 
a1 a3 a5 a7 … 

b1 b2 b3 b4 … 

c1 c2 c3 c4 … 

d1 d2 d3 d4 … 

⁝ ⁝ ⁝ ⁝ 
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The simulated annealing algorithm accepts all points that lower the objective function and 
it also accepts all points that make the objective function go up with probability ω. The probability 
of accepting downhill or uphill moves is given by: 

1 if 𝛥𝛷 < 0, 
𝜔 = { 

𝑒𝑥𝑝( 
−𝛥𝛷 
 

 

𝛩 ) if 𝛥𝛷 > 0, 
(4) 

where ΔΦ is the increase in objective function Θ. In this way, the algorithm does not stuck 
in local minima, which is a major advantage of simulated annealing over other methods(Busetti, 
2003). We use the simulannealbnd routine in the procedure of data fitting. 

RESULTS AND DISCUSSION 

Stability analysis and R0 

An infectious model deals with two important points, namely the disease-free equilibrium 
(ε0) and the endemic equilibrium (ε1). Finding the equilibria is essential to understand long-term 
behaviour without the need to analytically solve the model (May, 1976). At equilibrium, the 
derivatives of model (2) are set equal to zero: 

𝜇 − 𝛼𝛾𝐼𝑆 − 𝜇𝑆 + 𝜓𝑅 = 0, 
𝛼𝛾𝐼𝑆 − 𝜇𝐿 − 𝜂𝐿 = 0, 
𝜂𝐿 − 𝜃𝐼 = 0, 
𝜎𝐼 − 𝜇𝑃 − 𝜌𝑃 = 0, 
𝜌𝑃 + P𝐼 − 𝜇𝑅 − 𝜓𝑅 = 0. ⎭ 

(5) 

Equilibrium needs to satisfies the condition of Eq. (5). Note that the equilibrium ε0 exists in 
a condition of infected individuals to eventually terminated (I = 0) and the entire population 
consists of only susceptible individuals (Bawa, Abdulrahman, Jimoh,& Adabara, 2013). Thus, ε0 = 
(1, 0, 0, 0, 0). While analyzing ε1 = (S1, L1, I1, P1, R1) is a little bit tricky. 

In an endemic situation, the disease is permanently existing in the population (I1 ≠ 0). 
According to Jones (2007), the critical proportion of susceptible individuals to occur an epidemic 
is expressed as S1 = R0-1, where R0 is the basic reproduction number. Therefore, the next- 
generation matrix is employed to compute R0. Note that the relevant states are L and I. The terms 
involve in gains and losses to L is αγIS and (μL + ηL), respectively, while the terms involve in gains 
and losses to I is 0 and (–ηL + θI), respectively. Then, the matrix F and V are computed at ε0 and 
expressed as follows: 

𝐅 = [
0 𝛼𝛾

] , 𝐕 = [
𝜇 + 𝜂 0

] (6) 
0 0 −𝜂 𝜃 

Then, R0 is determined by evaluating the spectral radius of F·V-1 or the dominant eigenvalue that 
satisfies the determinant of F·V-1. Thus, the R0 is expressed as: 

𝛼𝛾𝜂 
𝑅0 = 

(𝜂 + 𝜇)𝜃
. (7)

 

For ε1 = (S1, L1, I1, P1, R1), there exist a unique equilibrium with S1 = [θ(η+μ)/αγη]. It is necessary 

for ε1 to exist such that 0 < S1 = R -1 < 1, or equivalently, R0 > 1. On contrary, R0 < 1 is sufficient for ε0 

to exist. In a nutshell, R0 is a threshold parameter that determines the coexistence on the type of 

equilibria. Jacobian matrix is then evaluated at ε0 to examine the local stability as ε0 is of the interest in 

eliminating the epidemic. The Jacobian matrix at ε0 is written as: 
−𝜇 0 −𝛼𝛾 0 𝜓 

⎡ 0 −𝜇 − 𝜂 𝛼𝛾 0 0 
𝐽(𝜀 ) = 

⎢ 
0 𝜂 −𝜃 0 0 

⎤ 
⎥ 

(8) 
0 ⎢ ⎥ 

⎢ 0 0 𝜎 −𝜇 − 𝜌 0 ⎥ 
⎣ 0 0 P 𝜌 −𝜇 − 𝜓⎦ 

After some algebraic manipulation, the characteristic polynomial with eigenvalue λ is 
expressed as follows: 

 

(−𝜆 − 𝜇) ⋅ (−𝛼𝛾𝜂 + 𝜂𝜃 + 𝜂𝜆 + 𝜃𝜆 + 𝜆2 + 𝜃𝜇 + 𝜆𝜇) ⋅ 
(−𝜆 − 𝜇 − 𝜌) ⋅ (−𝜆 − 𝜇 − 𝜓) = 0. 

 
(9) 
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From the characteristic polynomial, the eigenvalues may be negative, positive, zero, or any 
combinations of these alternatives. Therefore, the equilibrium could be stable, unstable, or saddle 
which is depending on the values of parameters. Analysis continued with numerical 
experimentation with a set of parameters value. 

To examine ε0 for further interpretation, the characteristic polynomial Equation (9) is 
analyzed using the Routh stability criterion. On the purpose of the existence of ε0, the parameter 
settings with guaranteed R0 < 1 are as follows 

𝜇 = 0.035, 𝛼 = 0.014, 𝛾 = 0.9, 𝜓 = 0.084, 𝜌 = 0.0063, 

𝜂 = 0.049, 𝛿 = 0.0001, 𝜎 = 0.0035, P = 0.0042, }   (10) 

𝑆(0) = 0.5, 𝐿(0) = 0.1, 𝐼(0) = 0.3, 𝑃(0) = 0.025, 𝑅(0) = 0.075. 
By substituting the value of parameter into Eq. (9), yield: 

𝜆5 + 3.221 × 10–1𝜆4 + 3.8267 × 10–2𝜆3 + 2.0882 × 10–3𝜆2 
+5.3153 × 10–5𝜆 + 5.1223 × 10–7 = 0, 

Then, using the Routh’s stability criterion in Section 2.2 to analyze Equation above. The 
constructed Routh array is as follows: 

λ5 1 3.8267×10-2 5.3153×10-5 

λ4 3.221×10-1 2.0882×10-3 5.1223×10-7 

λ3 3.1784×10-2 5.1563×10-5 
 

λ2 1.5656×10-2 5.1223×10-7 
 

λ1 4.1164×10-5 
  

λ0 5.1223×10-7 
  

 
From the Routh array, there are no sign changes in the first column. According to the Routh 
stability criterion, the system is stable at ε0. 

Next, model simulation using the aid of ode45 Matlab built-in function is carried out by using 
parameter value in (10). 

 

Figure 3: Simulation for α = 0.014 week-1 (left) and α = 0.14 week-1 (right). 

For R0 = 0.1717 < 1, the model simulation is provided in Figure 3 (left). As shown in Figure 3 (left), 
model (2) reach ε0 as t increases. Suppose parameter α is increased to 0.14 week-1, R0 become 
1.7173 which is greater than 1. As shown in Figure 3(right), the system tends to ε1 for R0 > 1 in 3 
years. As t → ∞, ε1 = (0.5823, 0.1824, 0.2089, 0.0194, 0.0084) where S1 = 0.5823 = 1/R0. 
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Data fitting of measles outbreaks: a case study 

To do data fitting, an additional ODE is introduced to collect the infected data of measles per 

time. Suppose 𝐼c̅ um(t) as the number of cumulative measles infectious individuals at time t, then 
the ODE is defined as follows: 

𝑑𝐼¯
cum 

= 𝜂𝐿. 
𝑑𝑡 

 

(11) 

Thus, the number of cumulative infected individuals keeps increase over time. Due to the large 

number of 𝐼c̅ um, a rescale number of log10(1+𝐼c̅ um) is introduced. Hence, the objective function to 
minimize the error between model and actual data is expressed as follows: 

n 

Error = Σ[𝑙𝑜𝑔10 ( 1 + 𝐼 c̄um (𝑖)) − 𝑙𝑜𝑔10 ( 1 + 𝐼¯
cum,data 

2 
(𝑖))] . (12) 

i=0 

This error function is minimized by using the Simulated Annealing minimization routine. The 
result is summarized in Table 3. 

Some of the parameters are obtained from a known source. The total population in 1976 is 
approximately 12.46 × 106 with a growth rate of 2.52% (Worldometers, 2019). Measles infection 
affects children only, thus we consider S(0) = 2 × 106, and the parameter μ is set to 0.0252 year-1. 
Parameter ψ is vanished due to a measles body immune will naturally be produced after 
recovered (Buchanan and Bonthius, 2012). The rest of the parameters are estimated within the 
parameter interval. These estimated values give R0 = 1.2889, hence model (2) is stable at ε1. 
However, when the vaccination program has effectively covered for more than half the susceptible 
population in 1987, the measles cases has decreased significantly. The result of our case study is 
presented in Figure 5, where both simulated and actual data are expressed in logarithmic scale. 

As shown in Figure 4, the model has successfully fit with the actual measurement of measles 
outbreaks with an error value of 0.0406. This is the best value obtained by the Simulated 
Annealing minimization routine. With these results, the mathematical analysis of this work 
concluded here. 

Table 3: The estimated parameter of the data fitting procedure. 

Interval Source Value 
S(0) Fixed 2 × 106 

L(0) in [4.5, 5] × 103 Estimated 4.7131 × 
103 

 

I(0) Data I(1976) 
P(0) in [1, 1.5] × 103 Estimated 1.2858 × 

103 
 

R(0) Fixed 0 
μ Fixed 0.0252 

year-1 

α in [0.1, 1] Estimated 0.9976 
year-1 

γ in [0, 1] Estimated 0.9972 
ψ Fixed 0 
η in [0.1, 1] Estimated 0.9925 

year-1 

δ in [0.1, 1] Estimated 0.1414 
year-1 

σ in [0.1, 1] Estimated 0.2106 
year-1 

ϑ in [0.1, 1] Estimated 0.3755 
year-1 

ρ in [0.1, 1] Estimated 0.9709 
year-1 
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Figure 4: Data fitting using the scaled value of cumulative measles cases. 

CONCLUSION 

The traditional SIR model is analyzed by adding two compartments, namely latent and post- 
infection state. From this study, the connection of R0 as a threshold is analyzed, where R0 < 1 means 
the diseases will be extinct in the population implies the model is stable at ε0 but unstable at ε1. 
Whereas, a vice-versa case occurs in condition R0 > 1. In the case study of measles outbreaks, the 
model able to match the incidence data with a reasonable error value. For future research, the 
recommendation that can take into account is by studying the vaccination case infectious model 
with more detailed data. Overall, the exercise discussed in this work could provide a framework 
to develop a generic model for predicting the incidence of other contagious pathogenic diseases, 
such as severe acute respiratory syndrome, Ebola, tuberculosis, influenza, Covid-19, and other 
emerging infectious diseases. 
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