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Abstract: Presented in this paper is a computational approach that uses higher order Gaussian quadrature 
to improve the accuracy of the evaluation of an integral. The transformation from ξη space (standard 
Gaussian) to st space (higher order Gaussian) were shown throughout this paper. Not even that, the efficacy 
of this higher order Gaussian quadrature were tested by implementing and comparing it with standard 
Gaussian quadrature over the same integral. Results shown that the evaluation of an integral by using higher 
order Gaussian quadrature provide accurate and converge results compared to an integral using standard 
Gaussian quadrature. 
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INTRODUCTION 

There are numerous numerical integration methods such as Newton-Cotes formula, 
Trapezoidal Rule, Simpson Rule as well as Gaussian quadrature. Among all these numerical 
integration technique, Gaussian quadrature is well known as the method for its accurate 
approximation of an integral over a domain (Hussain, Karim,& Ahamad, 2012). The algorithm is 
applicable to a wide range of functions including smooth functions as well as functions containing 
singularities. This type of numerical integration has been used by many researchers to cope with 
different types of integral. Some of the researchers used Gaussian quadrature formulas to evaluate 
the integrals contain singular and nearly singular (Graglia & Lombardi, 2008; Kaneko & Xu, 1994; 
Ma, Rokhlin,& Wandzura, 1996). Moreover, Gaussian quadrature has also been implemented in 
an integral containing arbitrary function and stochastic differential equations (Kloeden & 
Shardlow, 2017; Monegato & Scuderi, 2005). Gaussian quadrature rules has also been employed 
in study of solar-irradiance spectrum where they computed the integral over the wavelength 
(Johnson, 2019). Not even that, Gaussian quadrature is prominent because of its effectiveness in 
dealing with one-dimensional integrals containing smooth functions as stated in (Butler & Moffitt, 
1982). This integrals was then extended to two-dimensional case. For an integral containing 
function 𝑓, the solution of the integral is represented and evaluated using the weighting sum. 
Other approach when dealing with numerical integration with singular integrand had been 
presented by (Schwartz, 1969). They started the evaluation with the consideration of Euler- 
Maclaurin sum formula. In order to decrease the error under the integration signs, they used a 
change of variables in their functions. However, this Euler-Maclaurin prediction seemed to be not 
reliable (Schwartz, 1969). They also stated that, when dealing with 1 numerical integration, the 
most efficient methods be used was the form of Gaussian quadrature. So, after applying the Euler- 
Maclaurin formula, they used the Gaussian quadrature form to get convergence results. 

At n-point of quadrature rule, Gaussian quadrature is represented as the following equation 
in one-dimensional where the weight function is denoted by 𝑤(𝑥) and the approximation is exact 
whenever function 𝑓 is a polynomial of degree less than 2n − 1. 

𝑏 𝑛 

∫ 𝑓(𝑥)𝑑𝑥 ≈ ∑ 𝑤𝑟𝑓(𝑥𝑟) 

𝑎 

where 𝑎 and 𝑏 is the limit of the integration. 
𝑟=1 

The intention of this paper is to provide the numerical approximation for two-dimensional 
integrals containing rational functions. The extension from the standard triangular domain of Ɛƞ 
in (Hussain, Karim,& Ahamad, 2012) into square domain of 𝑠𝑡 domain will be shown throughout 
this paper. In order to obtain more accurate results, the weight and nodes of Gaussian quadrature 
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will be increase. From this transformation, we will then compared the numerical results for both 
approach. This paper is organized by following manner. Next section will describe the algorithm 
of the higher order Gaussian quadrature while Section 3 provide all the numerical approximation 
of an integral with known analytical solution where we recorded it in table form. Lastly, a 
summary and the concluding marks on the results and the approach used are given in Section 4. 

 

METHOD 

We start the methodology of higher order Gaussian quadrature by transforming standard 
Gaussian quadrature which is in triangular form of (ξ, η) space where 0 ≤ ξ ≤ 1, and 0 ≤ η ≤ 1 to 
square space which is (𝑠, 𝑡) space where −1 ≤ s ≤ 1 and−1 ≤ t ≤ 1. Figure 1 showed the 
transformation of the triangle in ξη space into square in st space. 

 

Figure 1: The transformation from triangular element (ξη space) into square element (st space) 

We refer to the equation containing ξ and η as in equation (1) 

𝐼1 = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (1) 
 

1 1=ξ 

=  ∫  ∫ 𝑓(ξ, η ) |Jac|𝑑ξdη 
0 0 

We change equation in (1) by transforming the ξ and η to 𝑠 and 𝑡 by substituting; 

ξ =  (1 − 

 
1 + 𝑡 

η = 
2 

1 + 𝑡 
 

 

2 

1 + 𝑠 
) ( ), 

2 
 

(2) 

where we change the shape functions of ξ and η to new shape functions containing 𝑠 and 𝑡. For the 
next step, by finding the Jacobian in 𝑠 and 𝑡 terms, we will obtain; 

𝑑ξ 𝑑η 𝑑ξ 𝑑η 1 − 𝑡 
− = (3) 

𝑑𝑠 𝑑𝑡 𝑑𝑡 𝑑𝑠 8 
Therefore substitute all information into the integral in (1), it will yielding to; 

1 1 (1 + 𝑠)(1 − 𝑡) 1 + 𝑡 1 − 𝑡 
𝐼2 = 𝐴𝑟𝑒𝑎 ∫   ∫   𝑓 ( 4 

, 
2   

)
 𝑑𝑠𝑑𝑡 8 

−1 −1 
𝑛 𝑛 

1 − 𝑡 (1 + 𝑠)(1 − 𝑡) 1 + 𝑡 = 𝐴𝑟𝑒𝑎 ∑ ∑ 𝑊 𝑊 𝑓 ( , ) 
   

(4) 
8 

𝑖=1 𝑗=1 
𝑛𝑥𝑛 

𝑖    𝑗 4 2 

= 𝐴𝑟𝑒𝑎 ∑ 𝐺𝑟𝑓(𝑢𝑟, 𝑣𝑟 ). 
𝑟=1 

where 𝐺𝑟 denoted the new weights while 𝑢𝑟 and 𝑣𝑟 denoted the new Gaussian points. Since we 
had already transform the triangles into square −1 to 1, the Area will be equal to 1. 

1 − 𝑡 𝐺   = 𝑊 𝑊 , 𝑢 
 

(1 + 𝑠)(1 − 𝑡) = , 𝑣 
 

1 + 𝑡 = . 
 

(5) 
𝑟 8 𝑖    𝐽 𝑟 4 𝑟 2 

Suppose we want to find Gaussian quadrature of 2 × 2 points. We eventually will obtain four 
weights and Gaussian points . We know that, for one-dimension Gaussian quadrature of 2 points 
as stated in (Teh, 2009) is: 

1 

∫   𝑓(𝑥)𝑑𝑥 = 𝑓 ( 
−1 

−1 1 
) + 𝑓 ( ) 

√3 √3 

(6) 
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) 

( 

 
 

From this one-dimensional Gauss quadrature, we actually extend it into two-dimensional Gauss 
quadrature where in this case we seek for two-dimensional integral containing 𝑠 and 𝑡 which is: 

1 1 1 

∫ ∫ 𝑓(𝑠, 𝑡)𝑑𝑡𝑑𝑠 = ∫ 𝐹(𝑡)𝑑𝑠 (7) 

where 
−1   −1 −1 

 
1 

𝐹(𝑡) = ∫ 𝑓(𝑠, 𝑡)𝑑𝑡 
−1 

= [𝑓 (𝑠, 𝑡 = 
−1 1 

) + 𝑓 (𝑠, 𝑡 = )] 
√3 √3 

Hence, for two-dimension Gauss quadrature of 2 × 2 points, it will yields to; 
1 1 1 −1 −1 −1   1 1   −1 1 1 (8) 

∫   ∫   𝑓(𝑠, 𝑡)𝑑𝑡𝑑𝑠 = ∫   𝐹(𝑡)𝑑𝑠𝑑𝑡 = 𝑓 ( , ) + 𝑓 ( , ) + 𝑓 ( , ) + 𝑓 ( , 
−1   −1 −1 √3 √3 √3 √3 √3 √3 √3 √3 

 

But then, our main intention is to find the Gaussian points and weights as mention in (5), 
therefore, we substitute the values that we obtain from equation (8) into (5) as below: 

for 

 
 
 
 
 
 
 
 

for 

−1 
𝑓 ( , 

√3 

 
 
 
 
 
 
 
 
 
 
 

−1
𝑓 

 ,
 
√3 

−1
),

 
√3 

 
 
 
 
 
 
 
 
 
 
 
 
1 ), 

√3 

 
(1 − 

−1
) (1) 

𝐺1 =
 √3 

= 0.197168783648703, 
8 

 

(1 + 
−1

) (1 − 
−1

) 

𝑢1 =
 √3  √3 

= 0.166666666666667, 
4 

1 + 
−1 

𝑣1 =
 √3 

= 0.211324865405187. 
2 

 

 

(1 −
 1 

) (1) 

𝐺2 = √3 
= 0.052831216351297, 

8 
 

(1 + 
−1

) (1 −
 1 

 

𝑢2 =
 √3  √3 

= 0.044658198738520, 
4 

 
 
 
 
 

 
(9) 

 
 
 
 
 
 
 
 

(10) 

 
 

 
 1    −1 

𝑓 ( , ), 
 

1 +
 1  

𝑣2 =
 √3 

= 0.788675134594813. 
2 

√3  √3 
 

(1 − 
−1

) (1) 

𝐺3 = √3 
= 0.197168783648703, 

8 
 

(1 +
 1 

) (1 − 
−1

) 
 

  

𝑢3 =
 √3 √3   

= 0.622008467928146, 
4 

1 + 
−1 

 

(11) 

 
 

 1      1 
𝑓 ( , ), 

 

𝑣3 =
 √3 

= 0.211324865405187. 
2 

√3  √3 

) 

for 

for 
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(1 −
 1 

) (1) 

𝐺4 =
 √3 

= 0.052831216351297, 
8 

 

(1 +
 1 

) (1 − 
 1 

 

𝑢4 =
 √3  √3 

= 0.166666666666667, 
4 

 
 
 
 

(12) 

1 +
 1  

𝑣4 =
 √3 

= 0.788675134594813. 
2 

We then proceed to find the Gaussian points and weights for r = 2, 3, 4. Not even that, we compute 
the Gaussian points of 3 × 3 points where, for one-dimension, the Gaussian quadrature as stated 
in (Teh, 2009), we have; 

1 

∫  𝑓(𝑥)𝑑𝑥 = 
−1 

 

5 3 
𝑓 (−√ ) + 

9 5 

8 
𝑓(0) + 

9 

 

5 3 
𝑓 (√ ) 

9 5 

(13) 

We continue the computation for Gaussian weights and points for n = 3 where, we use the same 
steps when finding the higher Gaussian quadrature of 2 points. Two-dimensional integral for 
standard Gaussian quadrature is stated as in equation (14); 

1 1 25 
 

  

3 3 40 
 

   

3 25 3 3 
∫   ∫   𝑓(𝑠, 𝑡)𝑑𝑠 𝑑𝑡 − 𝑓 (−√ ,− √ ) + 𝑓 (−√  , 0) + 𝑓 (−√  , √  ) 

−1 −1 81 5 5 81 5 81 5 5 
 

  

 

40 3 
+  𝑓 (0, −√ ) + 

81  5 

64 
𝑓(0,0) + 

81 

40 3 
𝑓 (0, √ ) 

81 5 
 

(14) 
 

     

 

25 3 
+  𝑓 (√ 

81  5 

3 
,− √ ) + 

5 

40 3 
𝑓 (√ 

81 5 
, 0) + 

25 3 
𝑓 (√ 

81 5 

3 
, √ ) 

5 

The illustration of our Gaussian weights and points is stated in Table 1. For next section, we are 
going to test the Gaussian weights and points over an integral. After that, we will observe the 
accuracy and the convergence of the numerical results obtained. 

Table 1: Points and Weights for higher order Gaussian quadrature for n = 2 and 3 number of 
points. 

 

n G u v 

2 0.197168783648703 
0.052831216351297 
0.197168783648703 
0.052831216351297 

0.166666666666667 
0.044658198738520 
0.622008467928146 
0.166666666666667 

0.211324865405187 
0.788675134594813 
0.211324865405187 
0.788675134594813 

3 0.098765432098765 
0.013913785849291 
0.109543004274166 
0.061728395061728 
0.008696116155807 
0.068464377671354 
0.061728395061728 
0.008696116155807 
0.068464377671354 

0.250000000000000 
0.056350832689629 
0.443649167310371 
0.443649167310371 
0.100000000000000 
0.787298334620742 
0.056350832689629 
0.012701665379258 
0.100000000000000 

0.500000000000000 
0.887298334620742 
0.112701665379258 
0.500000000000000 
0.887298334620742 
0.112701665379258 
0.500000000000000 
0.887298334620742 
0.112701665379258 

 
RESULTS AND DISCUSSION 

The efficacy of higher order Gaussian quadrature that we had already computed were tested 
where, we used all the Gaussian weights and points obtained to an integral containing rational 

) 
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functions. We consider the integral which contain rational functions due to (Rathod & Karim, 
2002). The integral is shown as in equation (15); 

𝑖,𝑗 1 1−𝑦 𝑥𝑖𝑦𝑗  

𝐼1 = ∫ ∫ 𝑑𝑥𝑑𝑦 𝛼 + 𝛽𝑥 + 𝛾𝑦 (15) 
0 0 

where 𝑖, 𝑗 are non-negative integer while α, β and γ are constant values. By setting the same value 
of constant for α and β which is equal to 0.375, we have the following equation: 

𝑘,𝑗 1 1−𝑦 𝑥𝑘 (16) 
𝐼1 = ∫ ∫ 𝑑𝑥𝑑𝑦 0.375 − 0.375x 

0 0 

The convergence of the numerical results obtained and the number of points, 𝑛 involved is 
studied with different values of 𝑘 used. Here, 𝑘 is the power of the rational functions. Table 2 
below show the numerical results computed for 𝐼𝑘,0 where we consider 𝑘 = 2, 4 and 6. For the 

integrand of 𝑥
𝑘

 

𝛼+𝛽𝑥+𝛾𝑦 
with γ = 0, it can be seen that the higher order Gaussian quadrature gave 

more accurate results compared to the standard Gaussian quadrature. 

Table 2: Computed result of integrals in equation (16) for different order of rational functions, k 
= 2, 4 and 6. 

 

Method Points  Computed value of 𝑰𝒌,𝟎  

  k = 2 k = 4 k = 6 
Standard GQ     3 × 3  0.444444444444444  0.111111111111111  0.027777777777778  

 4 × 4 0.569444444444444 0.213888888888889 0.079567901234568 
Higher GQ     3 × 3  0.718531582729114  0.362976027173558  0.210753804951336  

 4 × 4 0.784939230000665 0.429383674445109 0.277002722064157 
 5 × 5 0.818970941425455 0.463415385869900 0.311034433488948 

Exact value 0.888888888888889 0.533333333333333 0.380952380952381 

In Table 3, we provide the relative error of the computed results for integral in (16). We find 
the relative error for the computed results by using the formula, Error= (𝐸𝑛 − 𝐸𝑎)/𝐸𝑎where 𝐸𝑛 

and 𝐸𝑎 are the numerical and exact values of an integrals respectively. The table illustrate that 
both methods perform better (the error is decreasing) as the number of points, 𝑛used is 
increasing. As we increase the number of points, n, the results of both approaches will converge 
to its exact value. However, the relative error for higher order Gaussian quadrature is much more 
smaller and this depicts that, higher Gaussian quadrature approach is more accurate compared to 
the standard Gaussian quadrature. Note that, for 𝑛 = 3, and 𝑘 = 2, higher Gaussian quadrature 
show error which is less than 0.5. The order of the rational functions will also effect the 
convergence of the results obtained. This can be seen from the table, the error increased as the 
order changed from 𝑘 = 2 to 𝑘 = 4 and 6. 

Table 3: Computed relative error of integral in equation (16) for different order of rational 
functions, k = 2, 4 and 6. 

 

Method Points Computed relative error of 𝑰𝒌,𝟎 
  k = 2 k = 4 k = 6 

Standard      
GQ 

3 × 3  0.5000  0.7917  0.9271  
4 × 4 0.3594 0.5990 0.7911 

Higher    
GQ    

3 × 3  0.1917  0.3194  0.4468  
4 × 4  0.1169  0.1949  0.2729  

 5 × 5 0.0787 0.1311 0.1835 

Next, we consider the integral where: 
1 1−𝑦 

𝐼0,𝑘 = ∫ ∫ 

 

𝑦𝑘 
 

𝑑𝑥𝑑𝑦 

0 0 0.375 − 0.375y 
Table 4 below show the result of the computed integral of 𝐼0,𝑟 where in this case we use k = 2, 4 
and 6 as in aforementioned integrals. From the table, we can see that when we implement the 
higher order of Gauss quadrature formula, the numerical evaluation give higher precision in terms 
of their convergence. Although that, the numerical solution for the standard Gauss quadrature 
give less accurate solution and low in their convergence rate. 
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Table 4: Computed results for integral in equation (17) for 𝑘 = 2, 4 and 6 
 

Method Points  Computed value of 𝑰𝒌,𝟎  

  k = 2 k = 4 k = 6 
Standard GQ     3 × 3  0.444444444444444  0.111111111111111  0.027777777777778  

 4 × 4 0.569444444444444 0.213888888888889 0.079567901234568 

Higher GQ     3 × 3  0.888888888888889  0.533333333333333  0.380000000000000  
 4 × 4 0.888888888888889 0.533333333333333 0.380952380952381 
 5 × 5 0.888888888888889 0.533333333333333 0.380952380952381 

Exact value 0.888888888888889 0.533333333333333 0.380952380952381 

 
CONCLUSION 

We have investigated Gaussian quadrature for higher order implication to the integral 
containing rational functions. Different approach in order to cope with integral containing rational 
functions is presented in this paper. We have shown that for increasing number of points, the 
integral evaluation will eventually lead to the exact values. The evaluation of the integral using 
higher order Gaussian quadrature provide higher accuracy numerical results compared to 
standard Gaussian quadrature. 

Acknowledgments 

The author would like to thank The Ministry of Higher Education (MOHE) through MyBrainSc 
scholarship. 

 

DAFTAR PUSTAKA 

Butler, J. S., & Moffitt, R. (1982). A computationally efficient quadrature procedure for the one- 
factor multinomial probit model. Econometrica: Journal of the Econometric Society, 761–764. 

Graglia, R. D., & Lombardi, G. (2008). Machine precision evaluation of singular and nearly singular 
potential integrals by use of Gauss quadrature formulas for rational functions. IEEE 
Transactions on Antennas and Propagation, 56(4), 981–998. 

Hussain, F., Karim, M. S., & Ahamad, R. (2012). Appropriate Gaussian quadrature formulae for 
triangles. International Journal of Applied Mathematics and Computation, 4(1), 24–38. 

Johnson, S. G. (2019). Accurate solar-power integration: Solar-weighted Gaussian quadrature. 
ArXiv Preprint ArXiv:1912.06870. 

Kaneko, H., & Xu, Y. (1994). Gauss-type quadratures for weakly singular integrals and their 
application to Fredholm integral equations of the second kind. Mathematics of Computation, 
62(206), 739–753. 

Kloeden, P., & Shardlow, T. (2017). Gauss-quadrature method for one-dimensional mean-field 
SDEs. SIAM Journal on Scientific Computing, 39(6), A2784–A2807. 

Ma, J., Rokhlin, V., & Wandzura, S. (1996). Generalized Gaussian quadrature rules for systems of 
arbitrary functions. SIAM Journal on Numerical Analysis, 33(3), 971–996. 

Monegato, G., & Scuderi, L. (2005). Numerical integration of functions with endpoint singularities 
and/or complex poles in 3D Galerkin boundary element methods. Publications of the 
Research Institute for Mathematical Sciences, 41(4), 869–895. 

Rathod, H. T., & Karim, M. S. (2002). An explicit integration scheme based on recursion for the 
curved triangular finite elements. Computers & Structures, 80(1), 43–76. 

Schwartz, C. (1969). Numerical integration of analytic functions. Journal of Computational Physics, 
4(1), 19–29. 

Teh, C. R. C. (2009). Numerical Method Algorithm and Matlab Programming. 


